

pytest-django Documentation

pytest-django is a plugin for pytest [https://pytest.org/] that provides a set of useful tools
for testing Django [https://www.djangoproject.com/] applications and projects.

Quick Start

$ pip install pytest-django

Make sure DJANGO_SETTINGS_MODULE is defined (see
Configuring Django settings) and make your tests discoverable
(see My tests are not being found. Why?):

Example using pytest.ini or tox.ini

-- FILE: pytest.ini (or tox.ini)
[pytest]
DJANGO_SETTINGS_MODULE = test.settings
-- recommended but optional:
python_files = tests.py test_*.py *_tests.py

Example using pyproject.toml

-- Example FILE: pyproject.toml
[tool.pytest.ini_options]
DJANGO_SETTINGS_MODULE = "test.settings"
-- recommended but optional:
python_files = ["test_*.py", "*_test.py", "testing/python/*.py"]

Run your tests with pytest:

$ pytest

Why would I use this instead of Django’s manage.py test command?

Running the test suite with pytest offers some features that are not present in Django’s standard test mechanism:

	Less boilerplate: no need to import unittest, create a subclass with methods. Just write tests as regular functions.

	Manage test dependencies with fixtures [https://docs.pytest.org/en/stable/reference/fixtures.html#fixtures].

	Run tests in multiple processes for increased speed.

	There are a lot of other nice plugins available for pytest.

	Easy switching: Existing unittest-style tests will still work without any modifications.

See the pytest documentation [https://docs.pytest.org/] for more information on pytest.

Bugs? Feature Suggestions?

Report issues and feature requests at the GitHub issue tracker [https://github.com/pytest-dev/pytest-django/issues].

Table of Contents

	Getting started with pytest and pytest-django
	Introduction

	Talks, articles and blog posts

	Step 1: Installation

	Step 2: Point pytest to your Django settings

	Step 3: Run your test suite

	Next steps

	Stuck? Need help?

	Configuring Django settings
	The environment variable DJANGO_SETTINGS_MODULE

	Command line option --ds=SETTINGS

	pytest.ini settings

	pyproject.toml settings

	Order of choosing settings

	Using django-configurations

	Using django.conf.settings.configure()

	Overriding individual settings

	Changing your app before Django gets set up

	Managing the Python path
	Automatic looking for Django projects

	Managing the Python path explicitly
	Managing your project with virtualenv, pip and editable mode

	Using pytest’s pythonpath option

	Usage and invocations
	Basic usage

	Additional command line options
	--fail-on-template-vars - fail for invalid variables in templates

	Additional pytest.ini settings
	django_debug_mode - change how DEBUG is set

	Running tests in parallel with pytest-xdist

	Database access
	Enabling database access in tests

	Testing transactions

	Tests requiring multiple databases

	--reuse-db - reuse the testing database between test runs

	--create-db - force re creation of the test database

	Example work flow with --reuse-db and --create-db.

	--no-migrations - Disable Django migrations

	Advanced database configuration
	Fixtures

	Examples

	Django helpers
	Assertions

	Markers
	pytest.mark.django_db - request database access

	pytest.mark.urls - override the urlconf

	pytest.mark.ignore_template_errors - ignore invalid template variables

	Fixtures
	rf - RequestFactory

	async_rf - AsyncRequestFactory

	client - django.test.Client

	async_client - django.test.AsyncClient

	admin_client - django.test.Client logged in as admin

	admin_user - an admin user (superuser)

	django_user_model

	django_username_field

	db

	transactional_db

	django_db_reset_sequences

	django_db_serialized_rollback

	live_server

	settings

	django_assert_num_queries

	django_assert_max_num_queries

	django_capture_on_commit_callbacks

	mailoutbox

	Automatic cleanup
	Clearing of site cache

	Clearing of mail.outbox

	FAQ
	I see an error saying “could not import myproject.settings”

	Are Django test tags supported?

	How can I make sure that all my tests run with a specific locale?

	My tests are not being found. Why?

	Does pytest-django work with the pytest-xdist plugin?

	How can I use manage.py test with pytest-django?

	How can I give database access to all my tests without the django_db marker?

	How/where can I get help with pytest/pytest-django?

	Contributing to pytest-django
	Community

	In a nutshell

	Contributing Code
	Getting the source code

	Syntax and conventions

	Process

	Tests

	Contributing Documentation

	Changelog
	v4.8.0 (2024-01-30)
	Improvements

	Bugfixes

	v4.7.0 (2023-11-08)
	Compatibility

	Improvements

	v4.6.0 (2023-10-30)
	Compatibility

	Improvements

	Bugfixes

	v4.5.2 (2021-12-07)
	Bugfixes

	v4.5.1 (2021-12-02)
	Bugfixes

	v4.5.0 (2021-12-01)
	Improvements

	Bugfixes

	v4.4.0 (2021-06-06)
	Improvements

	v4.3.0 (2021-05-15)
	Improvements

	v4.2.0 (2021-04-10)
	Improvements

	Bugfixes

	v4.1.0 (2020-10-22)
	Improvements

	Bugfixes

	v4.0.0 (2020-10-16)
	Compatibility

	Improvements

	Bugfixes

	Misc

	v3.10.0 (2020-08-25)
	Improvements

	Misc

	v3.9.0 (2020-03-31)
	Improvements

	Bugfixes

	Misc

	v3.8.0 (2020-01-14)
	Improvements

	v3.7.0 (2019-11-09)
	Bugfixes

	v3.6.0 (2019-10-17)
	Features

	Bugfixes

	Misc

	v3.5.1 (2019-06-29)
	Bugfixes

	v3.5.0 (2019-06-03)
	Features

	Bugfixes

	Misc

	v3.4.8 (2019-02-26)
	Bugfixes

	v3.4.7 (2019-02-03)
	Bugfixes

	v3.4.6 (2019-02-01)
	Bugfixes

	Misc

	v3.4.5 (2019-01-07)
	Bugfixes

	Misc

	v3.4.4 (2018-11-13)
	Bugfixes

	Features

	Docs

	Misc

	v3.4.3 (2018-09-16)
	Bugfixes

	v3.4.2 (2018-08-20)
	Bugfixes

	v3.4.0 (2018-08-16)
	Features

	Bugfixes

	Compatibility

	v3.3.3 (2018-07-26)
	Bug fixes

	Docs

	v3.3.2 (2018-06-21)
	Bug fixes

	Compatibility

	v3.3.0 (2018-06-15)
	Features

	Bug fixes

	Compatibility

	v3.2.1

	v3.2.0
	Features

	Bug fixes

	Compatibility

	v3.1.2
	Bug fixes

	v3.1.1
	Bug fixes

	v3.1.0
	Features

	Compatibility

	v3.0.0
	Bug fixes

	Features

	Compatibility

	v2.9.1
	Bug fixes

	v2.9.0
	Features

	Bug fixes

	Compatibility

	v2.8.0
	Features

	Bug fixes

	v2.7.0
	Features

	Bugfixes

	v2.6.2

	v2.6.1

	v2.6.0

	v2.5.1

	v2.5.0

	v2.4.0

	v2.3.1

	v2.3.0

	v2.2.1

	v2.2.0

	v2.1.0

	v2.0.1

	v2.0.0

	v1.4

	v1.3

	v1.2.2

	v1.2.1

	v1.2

	v1.1.1

	v1.1

Indices and Tables

	Index

	Module Index

Getting started with pytest and pytest-django

Introduction

pytest and pytest-django are compatible with standard Django test suites and
Nose test suites. They should be able to pick up and run existing tests without
any or little configuration. This section describes how to get started quickly.

Talks, articles and blog posts

	Talk from DjangoCon Europe 2014: pytest: helps you write better Django apps, by Andreas Pelme [https://www.youtube.com/watch?v=aaArYVh6XSM]

	Talk from EuroPython 2013: Testing Django application with pytest, by Andreas Pelme [https://www.youtube.com/watch?v=aUf8Fkb7TaY]

	Three part blog post tutorial (part 3 mentions Django integration): pytest: no-boilerplate testing, by Daniel Greenfeld [https://daniel.feldroy.com/pytest-no-boilerplate-testing.html]

	Blog post: Django Projects to Django Apps: Converting the Unit Tests, by
John Costa [https://www.johnmcostaiii.net/post/2013-04-21-django-projects-to-django-apps-converting-the-unit-tests/].

For general information and tutorials on pytest, see the pytest tutorial page [https://pytest.org/en/stable/getting-started.html].

Step 1: Installation

pytest-django can be obtained directly from PyPI [https://pypi.python.org/pypi/pytest-django], and can be installed with
pip:

pip install pytest-django

Installing pytest-django will also automatically install the latest version of
pytest. pytest-django uses pytest’s plugin system and can be used right away
after installation, there is nothing more to configure.

Step 2: Point pytest to your Django settings

You need to tell pytest which Django settings should be used for test
runs. The easiest way to achieve this is to create a pytest configuration file
with this information.

Create a file called pytest.ini in your project root directory that
contains:

[pytest]
DJANGO_SETTINGS_MODULE = yourproject.settings

Another options for people that use pyproject.toml is add the following code:

[tool.pytest.ini_options]
DJANGO_SETTINGS_MODULE = "yourproject.settings"

You can also specify your Django settings by setting the
DJANGO_SETTINGS_MODULE environment variable or specifying the
--ds=yourproject.settings command line flag when running the tests.
See the full documentation on Configuring Django settings.

Optionally, also add the following line to the [pytest] section to
instruct pytest to collect tests in Django’s default app layouts, too.
See the FAQ at My tests are not being found. Why? for more infos.

python_files = tests.py test_*.py *_tests.py

Step 3: Run your test suite

Tests are invoked directly with the pytest command, instead of manage.py
test, that you might be used to:

pytest

Do you have problems with pytest not finding your code? See the FAQ
I see an error saying “could not import myproject.settings”.

Next steps

The Usage and invocations section describes more ways to interact with your test suites.

pytest-django also provides some Django helpers to make it easier to write
Django tests.

Consult the pytest documentation [https://pytest.org/] for more information
on pytest itself.

Stuck? Need help?

No problem, see the FAQ on How can I use manage.py test with pytest-django? for information on how to
get help.

Configuring Django settings

There are a couple of different ways Django settings can be provided for
the tests.

The environment variable DJANGO_SETTINGS_MODULE

Running the tests with DJANGO_SETTINGS_MODULE defined will find the
Django settings the same way Django does by default.

Example:

$ export DJANGO_SETTINGS_MODULE=test.settings
$ pytest

or:

$ DJANGO_SETTINGS_MODULE=test.settings pytest

Command line option --ds=SETTINGS

Example:

$ pytest --ds=test.settings

pytest.ini settings

Example contents of pytest.ini:

[pytest]
DJANGO_SETTINGS_MODULE = test.settings

pyproject.toml settings

Example contents of pyproject.toml:

[tool.pytest.ini_options]
DJANGO_SETTINGS_MODULE = "test.settings"

Order of choosing settings

The order of precedence is, from highest to lowest:

	The command line option --ds

	The environment variable DJANGO_SETTINGS_MODULE

	The DJANGO_SETTINGS_MODULE option in the configuration file -
pytest.ini, or other file that Pytest finds such as tox.ini or pyproject.toml

If you want to use the highest precedence in the configuration file, you can
use addopts = --ds=yourtestsettings.

Using django-configurations

There is support for using django-configurations [https://pypi.python.org/pypi/django-configurations/].

To do so configure the settings class using an environment variable, the
--dc flag, pytest.ini option DJANGO_CONFIGURATION or pyproject.toml option DJANGO_CONFIGURATION.

Environment Variable:

$ export DJANGO_CONFIGURATION=MySettings
$ pytest

Command Line Option:

$ pytest --dc=MySettings

INI File Contents:

[pytest]
DJANGO_CONFIGURATION=MySettings

pyproject.toml File Contents:

[tool.pytest.ini_options]
DJANGO_CONFIGURATION = "MySettings"

Using django.conf.settings.configure()

In case there is no DJANGO_SETTINGS_MODULE, the settings object can be
created by calling django.conf.settings.configure().

This can be done from your project’s conftest.py file:

from django.conf import settings

def pytest_configure():
 settings.configure(DATABASES=...)

Overriding individual settings

Settings can be overridden by using the settings fixture:

@pytest.fixture(autouse=True)
def use_dummy_cache_backend(settings):
 settings.CACHES = {
 "default": {
 "BACKEND": "django.core.cache.backends.dummy.DummyCache",
 }
 }

Here autouse=True is used, meaning the fixture is automatically applied to all tests,
but it can also be requested individually per-test.

Changing your app before Django gets set up

pytest-django calls django.setup() [https://docs.djangoproject.com/en/stable/ref/applications/#django.setup] automatically. If you want to do
anything before this, you have to create a pytest plugin and use
the pytest_load_initial_conftests() [https://docs.pytest.org/en/stable/reference/reference.html#pytest.hookspec.pytest_load_initial_conftests] hook, with
tryfirst=True, so that it gets run before the hook in pytest-django
itself:

@pytest.hookimpl(tryfirst=True)
def pytest_load_initial_conftests(early_config, parser, args):
 import project.app.signals

 def noop(*args, **kwargs):
 pass

 project.app.signals.something = noop

This plugin can then be used e.g. via -p in addopts [https://docs.pytest.org/en/stable/reference/reference.html#confval-addopts].

Managing the Python path

pytest needs to be able to import the code in your project. Normally, when
interacting with Django code, the interaction happens via manage.py, which
will implicitly add that directory to the Python path.

However, when Python is started via the pytest command, some extra care is
needed to have the Python path setup properly. There are two ways to handle
this problem, described below.

Automatic looking for Django projects

By default, pytest-django tries to find Django projects by automatically
looking for the project’s manage.py file and adding its directory to the
Python path.

Looking for the manage.py file uses the same algorithm as pytest uses to
find pyproject.toml, pytest.ini, tox.ini and setup.cfg: Each
test root directories parents will be searched for manage.py files, and it
will stop when the first file is found.

If you have a custom project setup, have none or multiple manage.py files
in your project, the automatic detection may not be correct. See
Managing the Python path explicitly for more details on how to configure
your environment in that case.

Managing the Python path explicitly

First, disable the automatic Django project finder. Add this to
pytest.ini, setup.cfg or tox.ini:

[pytest]
django_find_project = false

Next, you need to make sure that your project code is available on the Python
path. There are multiple ways to achieve this:

Managing your project with virtualenv, pip and editable mode

The easiest way to have your code available on the Python path when using
virtualenv and pip is to install your project in editable mode when developing.

If you don’t already have a pyproject.toml file, creating a pyproject.toml file
with this content will get you started:

pyproject.toml
[build-system]
requires = [
 "setuptools>=61.0.0",
]
build-backend = "setuptools.build_meta"

This pyproject.toml file is not sufficient to distribute your package to PyPI or
more general packaging, but it should help you get started. Please refer to the
Python Packaging User Guide [https://python-packaging-user-guide.readthedocs.io/en/latest/tutorial.html#creating-your-own-project]
for more information on packaging Python applications.

To install the project afterwards:

pip install --editable .

Your code should then be importable from any Python application. You can also
add this directly to your project’s requirements.txt file like this:

requirements.txt
-e .
django
pytest-django

Using pytest’s pythonpath option

You can explicitly add paths to the Python search path using pytest’s
pythonpath [https://docs.pytest.org/en/stable/reference/reference.html#confval-pythonpath] option.

Example: project with src layout

For a Django package using the src layout, with test settings located in a
tests package at the top level:

myproj
├── pytest.ini
├── src
│ └── myproj
│ ├── __init__.py
│ └── main.py
└── tests
 ├── testapp
 | ├── __init__.py
 | └── apps.py
 ├── __init__.py
 ├── settings.py
 └── test_main.py

You’ll need to specify both the top level directory and src for things to work:

[pytest]
DJANGO_SETTINGS_MODULE = tests.settings
pythonpath = . src

If you don’t specify ., the settings module won’t be found and
you’ll get an import error: ImportError: No module named 'tests'.

Usage and invocations

Basic usage

When using pytest-django, django-admin.py or manage.py is not used to run
tests. This makes it possible to invoke pytest and other plugins with all its
different options directly.

Running a test suite is done by invoking the pytest command directly:

pytest

Specific test files or directories can be selected by specifying the test file names directly on
the command line:

pytest test_something.py a_directory

See the pytest documentation on Usage and invocations [https://pytest.org/en/stable/usage.html] for more help on available parameters.

Additional command line options

--fail-on-template-vars - fail for invalid variables in templates

Fail tests that render templates which make use of invalid template variables.

You can switch it on in pytest.ini:

[pytest]
FAIL_INVALID_TEMPLATE_VARS = True

Additional pytest.ini settings

django_debug_mode - change how DEBUG is set

By default tests run with the
DEBUG [https://docs.djangoproject.com/en/stable/ref/settings/#debug]
setting set to False. This is to ensure that the observed output of your
code matches what will be seen in a production setting.

If you want DEBUG to be set:

[pytest]
django_debug_mode = true

You can also use django_debug_mode = keep to disable the overriding and use
whatever is already set in the Django settings.

Running tests in parallel with pytest-xdist

pytest-django supports running tests on multiple processes to speed up test
suite run time. This can lead to significant speed improvements on multi
core/multi CPU machines.

This requires the pytest-xdist plugin to be available, it can usually be
installed with:

pip install pytest-xdist

You can then run the tests by running:

pytest -n <number of processes>

When tests are invoked with xdist, pytest-django will create a separate test
database for each process. Each test database will be given a suffix
(something like “gw0”, “gw1”) to map to a xdist process. If your database name
is set to “foo”, the test database with xdist will be “test_foo_gw0”,
“test_foo_gw1” etc.

See the full documentation on pytest-xdist [https://github.com/pytest-dev/pytest-xdist/blob/master/README.rst] for more
information. Among other features, pytest-xdist can distribute/coordinate test
execution on remote machines.

Database access

pytest-django takes a conservative approach to enabling database
access. By default your tests will fail if they try to access the
database. Only if you explicitly request database access will this be
allowed. This encourages you to keep database-needing tests to a
minimum which makes it very clear what code uses the database.

Enabling database access in tests

You can use pytest marks [https://docs.pytest.org/en/stable/how-to/mark.html#mark] to tell pytest-django your
test needs database access:

import pytest

@pytest.mark.django_db
def test_my_user():
 me = User.objects.get(username='me')
 assert me.is_superuser

It is also possible to mark all tests in a class or module at once.
This demonstrates all the ways of marking, even though they overlap.
Just one of these marks would have been sufficient. See the pytest
documentation [https://docs.pytest.org/en/stable/example/markers.html#scoped-marking] for detail:

import pytest

pytestmark = pytest.mark.django_db

@pytest.mark.django_db
class TestUsers:
 pytestmark = pytest.mark.django_db
 def test_my_user(self):
 me = User.objects.get(username='me')
 assert me.is_superuser

By default pytest-django will set up the Django databases the
first time a test needs them. Once setup, the database is cached to be
used for all subsequent tests and rolls back transactions, to isolate
tests from each other. This is the same way the standard Django
TestCase [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TestCase] uses the database. However
pytest-django also caters for transaction test cases and allows
you to keep the test databases configured across different test runs.

Testing transactions

Django itself has the TransactionTestCase [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TransactionTestCase] which
allows you to test transactions and will flush the database between
tests to isolate them. The downside of this is that these tests are
much slower to set up due to the required flushing of the database.
pytest-django also supports this style of tests, which you can
select using an argument to the django_db mark:

@pytest.mark.django_db(transaction=True)
def test_spam():
 pass # test relying on transactions

Tests requiring multiple databases

New in version 4.3.

Caution

This support is experimental and is subject to change without
deprecation. We are still figuring out the best way to expose this
functionality. If you are using this successfully or unsuccessfully,
let us know [https://github.com/pytest-dev/pytest-django/issues/924]!

pytest-django has experimental support for multi-database configurations.
Currently pytest-django does not specifically support Django’s
multi-database support, using the databases argument to the
django_db mark:

@pytest.mark.django_db(databases=['default', 'other'])
def test_spam():
 assert MyModel.objects.using('other').count() == 0

For details see django.test.TransactionTestCase.databases [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TransactionTestCase.databases] and
django.test.TestCase.databases [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TestCase.databases].

--reuse-db - reuse the testing database between test runs

Using --reuse-db will create the test database in the same way as
manage.py test usually does.

However, after the test run, the test database will not be removed.

The next time a test run is started with --reuse-db, the database will
instantly be re used. This will allow much faster startup time for tests.

This can be especially useful when running a few tests, when there are a lot
of database tables to set up.

--reuse-db will not pick up schema changes between test runs. You must run
the tests with --reuse-db --create-db to re-create the database according
to the new schema. Running without --reuse-db is also possible, since the
database will automatically be re-created.

--create-db - force re creation of the test database

When used with --reuse-db, this option will re-create the database,
regardless of whether it exists or not.

Example work flow with --reuse-db and --create-db.

A good way to use --reuse-db and --create-db can be:

	Put --reuse-db in your default options (in your project’s pytest.ini file):

[pytest]
addopts = --reuse-db

	Just run tests with pytest, on the first run the test database will be
created. The next test run it will be reused.

	When you alter your database schema, run pytest --create-db, to force
re-creation of the test database.

--no-migrations - Disable Django migrations

Using --no-migrations (alias: --nomigrations) will disable Django migrations and create the database
by inspecting all models. It may be faster when there are several migrations to
run in the database setup. You can use --migrations to force running
migrations in case --no-migrations is used, e.g. in pyproject.toml.

Advanced database configuration

pytest-django provides options to customize the way database is configured. The
default database construction mostly follows Django’s own test runner. You can
however influence all parts of the database setup process to make it fit in
projects with special requirements.

This section assumes some familiarity with the Django test runner, Django
database creation and pytest fixtures.

Fixtures

There are some fixtures which will let you change the way the database is
configured in your own project. These fixtures can be overridden in your own
project by specifying a fixture with the same name and scope in conftest.py.

Use the pytest-django source code

The default implementation of these fixtures can be found in
fixtures.py [https://github.com/pytest-dev/pytest-django/blob/master/pytest_django/fixtures.py].

The code is relatively short and straightforward and can provide a
starting point when you need to customize database setup in your own
project.

django_db_setup

This is the top-level fixture that ensures that the test databases are created
and available. This fixture is session scoped (it will be run once per test
session) and is responsible for making sure the test database is available for tests
that need it.

The default implementation creates the test database by applying migrations and removes
databases after the test run.

You can override this fixture in your own conftest.py to customize how test
databases are constructed.

django_db_modify_db_settings

This fixture allows modifying
django.conf.settings.DATABASES [https://docs.djangoproject.com/en/stable/ref/settings/#databases]
just before the databases are configured.

If you need to customize the location of your test database, this is the
fixture you want to override.

The default implementation of this fixture requests the
django_db_modify_db_settings_parallel_suffix to provide compatibility
with pytest-xdist.

This fixture is by default requested from django_db_setup.

django_db_modify_db_settings_parallel_suffix

Requesting this fixture will add a suffix to the database name when the tests
are run via pytest-xdist, or via tox in parallel mode.

This fixture is by default requested from
django_db_modify_db_settings.

django_db_modify_db_settings_tox_suffix

Requesting this fixture will add a suffix to the database name when the tests
are run via tox in parallel mode.

This fixture is by default requested from
django_db_modify_db_settings_parallel_suffix.

django_db_modify_db_settings_xdist_suffix

Requesting this fixture will add a suffix to the database name when the tests
are run via pytest-xdist.

This fixture is by default requested from
django_db_modify_db_settings_parallel_suffix.

django_db_use_migrations

Returns whether or not to use migrations to create the test
databases.

The default implementation returns the value of the
--migrations/--no-migrations command line options.

This fixture is by default requested from django_db_setup.

django_db_keepdb

Returns whether or not to re-use an existing database and to keep it after the
test run.

The default implementation handles the --reuse-db and --create-db
command line options.

This fixture is by default requested from django_db_setup.

django_db_createdb

Returns whether or not the database is to be re-created before running any
tests.

This fixture is by default requested from django_db_setup.

django_db_blocker

Warning

It does not manage transactions and changes made to the database will not
be automatically restored. Using the pytest.mark.django_db marker
or db fixture, which wraps database changes in a transaction and
restores the state is generally the thing you want in tests. This marker
can be used when you are trying to influence the way the database is
configured.

Database access is by default not allowed. django_db_blocker is the object
which can allow specific code paths to have access to the database. This
fixture is used internally to implement the db fixture.

django_db_blocker can be used as a context manager to enable database
access for the specified block:

@pytest.fixture
def myfixture(django_db_blocker):
 with django_db_blocker.unblock():
 ... # modify something in the database

You can also manage the access manually via these methods:

	
class pytest_django.DjangoDbBlocker

	
	
django_db_blocker.unblock()

	

Enable database access. Should be followed by a call to
restore() or used as a context manager.

	
django_db_blocker.block()

	

Disable database access. Should be followed by a call to
restore() or used as a context manager.

	
django_db_blocker.restore()

	

Restore the previous state of the database blocking.

Examples

Using a template database for tests

This example shows how a pre-created PostgreSQL source database can be copied
and used for tests.

Put this into conftest.py:

import pytest
from django.db import connections

import psycopg2
from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT

def run_sql(sql):
 conn = psycopg2.connect(database='postgres')
 conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)
 cur = conn.cursor()
 cur.execute(sql)
 conn.close()

@pytest.fixture(scope='session')
def django_db_setup():
 from django.conf import settings

 settings.DATABASES['default']['NAME'] = 'the_copied_db'

 run_sql('DROP DATABASE IF EXISTS the_copied_db')
 run_sql('CREATE DATABASE the_copied_db TEMPLATE the_source_db')

 yield

 for connection in connections.all():
 connection.close()

 run_sql('DROP DATABASE the_copied_db')

Using an existing, external database for tests

This example shows how you can connect to an existing database and use it for
your tests. This example is trivial, you just need to disable all of
pytest-django and Django’s test database creation and point to the existing
database. This is achieved by simply implementing a no-op
django_db_setup fixture.

Put this into conftest.py:

import pytest

@pytest.fixture(scope='session')
def django_db_setup():
 settings.DATABASES['default'] = {
 'ENGINE': 'django.db.backends.mysql',
 'HOST': 'db.example.com',
 'NAME': 'external_db',
 }

Populate the database with initial test data

In some cases you want to populate the test database before you start the
tests. Because of different ways you may use the test database, there are
different ways to populate it.

Populate the test database if you don’t use transactional or live_server

If you are using the pytest.mark.django_db() marker or db
fixture, you probably don’t want to explicitly handle transactions in your
tests. In this case, it is sufficient to populate your database only
once. You can put code like this in conftest.py:

import pytest

from django.core.management import call_command

@pytest.fixture(scope='session')
def django_db_setup(django_db_setup, django_db_blocker):
 with django_db_blocker.unblock():
 call_command('loaddata', 'my_fixture.json')

This loads the Django fixture my_fixture.json once for the entire test
session. This data will be available to tests marked with the
pytest.mark.django_db() mark, or tests which use the db
fixture. The test data will be saved in the database and will not be reset.
This example uses Django’s fixture loading mechanism, but it can be replaced
with any way of loading data into the database.

Notice django_db_setup in the argument list. This triggers the
original pytest-django fixture to create the test database, so that when
call_command is invoked, the test database is already prepared and
configured.

Populate the test database if you use transactional or live_server

In case you use transactional tests (you use the pytest.mark.django_db()
marker with transaction=True, or the transactional_db fixture),
you need to repopulate your database every time a test starts, because the
database is cleared between tests.

The live_server fixture uses transactional_db, so you
also need to populate the test database this way when using it.

You can put this code into conftest.py. Note that while it it is similar to
the previous one, the scope is changed from session to function:

import pytest

from myapp.models import Widget

@pytest.fixture(scope='function')
def django_db_setup(django_db_setup, django_db_blocker):
 with django_db_blocker.unblock():
 Widget.objects.create(...)

Use the same database for all xdist processes

By default, each xdist process gets its own database to run tests on. This is
needed to have transactional tests that do not interfere with each other.

If you instead want your tests to use the same database, override the
django_db_modify_db_settings to not do anything. Put this in
conftest.py:

import pytest

@pytest.fixture(scope='session')
def django_db_modify_db_settings():
 pass

Randomize database sequences

You can customize the test database after it has been created by extending the
django_db_setup fixture. This example shows how to give a PostgreSQL
sequence a random starting value. This can be used to detect and prevent
primary key id’s from being hard-coded in tests.

Put this in conftest.py:

import random
import pytest
from django.db import connection

@pytest.fixture(scope='session')
def django_db_setup(django_db_setup, django_db_blocker):
 with django_db_blocker.unblock():
 cur = connection.cursor()
 cur.execute('ALTER SEQUENCE app_model_id_seq RESTART WITH %s;',
 [random.randint(10000, 20000)])

Create the test database from a custom SQL script

You can replace the django_db_setup fixture and run any code in its
place. This includes creating your database by hand by running a SQL script
directly. This example shows sqlite3’s executescript method. In a more
general use case, you probably want to load the SQL statements from a file or
invoke the psql or the mysql command line tool.

Put this in conftest.py:

import pytest
from django.db import connection

@pytest.fixture(scope='session')
def django_db_setup(django_db_blocker):
 with django_db_blocker.unblock():
 with connection.cursor() as c:
 c.executescript('''
 DROP TABLE IF EXISTS theapp_item;
 CREATE TABLE theapp_item (id, name);
 INSERT INTO theapp_item (name) VALUES ('created from a sql script');
 ''')

Warning

This snippet shows cursor().executescript() which is sqlite specific, for
other database engines this method might differ. For instance, psycopg2 uses
cursor().execute().

Use a read only database

You can replace the ordinary django_db_setup to completely avoid database
creation/migrations. If you have no need for rollbacks or truncating tables,
you can simply avoid blocking the database and use it directly. When using this
method you must ensure that your tests do not change the database state.

Put this in conftest.py:

import pytest

@pytest.fixture(scope='session')
def django_db_setup():
 """Avoid creating/setting up the test database"""
 pass

@pytest.fixture
def db_access_without_rollback_and_truncate(request, django_db_setup, django_db_blocker):
 django_db_blocker.unblock()
 yield
 django_db_blocker.restore()

Django helpers

Assertions

All of Django’s TestCase [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TestCase]
Assertions [https://docs.djangoproject.com/en/stable/topics/testing/tools/#assertions] are available in pytest_django.asserts, e.g.

from pytest_django.asserts import assertTemplateUsed

Markers

pytest-django registers and uses markers. See the pytest
documentation [https://docs.pytest.org/en/stable/how-to/mark.html#mark] on what marks are and for notes on
using [https://docs.pytest.org/en/stable/example/markers.html#scoped-marking] them. Remember that you can apply
marks at the single test level, the class level, the module level, and
dynamically in a hook or fixture.

pytest.mark.django_db - request database access

	
@pytest.mark.django_db([transaction=False, reset_sequences=False, databases=None, serialized_rollback=False, available_apps=None])

	This is used to mark a test function as requiring the database. It
will ensure the database is set up correctly for the test. Each test
will run in its own transaction which will be rolled back at the end
of the test. This behavior is the same as Django’s standard
TestCase [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TestCase] class.

In order for a test to have access to the database it must either be marked
using the django_db() mark or request one of the db,
transactional_db or django_db_reset_sequences fixtures.
Otherwise the test will fail when trying to access the database.

	Parameters:

	
	transaction (bool [https://docs.python.org/3/library/functions.html#bool]) – The transaction argument will allow the test to use real transactions.
With transaction=False (the default when not specified), transaction
operations are noops during the test. This is the same behavior that
django.test.TestCase [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TestCase] uses. When transaction=True, the behavior
will be the same as django.test.TransactionTestCase [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TransactionTestCase].

	reset_sequences (bool [https://docs.python.org/3/library/functions.html#bool]) – The reset_sequences argument will ask to reset auto increment sequence
values (e.g. primary keys) before running the test. Defaults to
False. Must be used together with transaction=True to have an
effect. Please be aware that not all databases support this feature.
For details see django.test.TransactionTestCase.reset_sequences [https://docs.djangoproject.com/en/stable/topics/testing/advanced/#django.test.TransactionTestCase.reset_sequences].

	databases (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]] | str [https://docs.python.org/3/library/stdtypes.html#str] | None) –
Caution

This argument is experimental and is subject to change without
deprecation. We are still figuring out the best way to expose this
functionality. If you are using this successfully or unsuccessfully,
let us know [https://github.com/pytest-dev/pytest-django/issues/924]!

The databases argument defines which databases in a multi-database
configuration will be set up and may be used by the test. Defaults to
only the default database. The special value "__all__" may be use
to specify all configured databases.
For details see django.test.TransactionTestCase.databases [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TransactionTestCase.databases] and
django.test.TestCase.databases [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TestCase.databases].

	serialized_rollback (bool [https://docs.python.org/3/library/functions.html#bool]) – The serialized_rollback argument enables rollback emulation [https://docs.djangoproject.com/en/stable/topics/testing/overview/#test-case-serialized-rollback]. After a transactional test (or any test
using a database backend which doesn’t support transactions) runs, the
database is flushed, destroying data created in data migrations. Setting
serialized_rollback=True tells Django to serialize the database content
during setup, and restore it during teardown.

Note that this will slow down that test suite by approximately 3x.

	available_apps (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]] | None) –
Caution

This argument is experimental and is subject to change without
deprecation.

The available_apps argument defines a subset of apps that are enabled
for a specific set of tests. Setting available_apps configures models
for which types/permissions will be created before each test, and which
model tables will be emptied after each test (this truncation may cascade
to unavailable apps models).

For details see django.test.TransactionTestCase.available_apps [https://docs.djangoproject.com/en/stable/topics/testing/advanced/#django.test.TransactionTestCase.available_apps]

Note

If you want access to the Django database inside a fixture, this marker may
or may not help even if the function requesting your fixture has this marker
applied, depending on pytest’s fixture execution order. To access the database
in a fixture, it is recommended that the fixture explicitly request one of the
db, transactional_db,
django_db_reset_sequences or
django_db_serialized_rollback fixtures. See below for a description
of them.

Note

Automatic usage with django.test.TestCase.

Test classes that subclass django.test.TestCase [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TestCase] will have access to
the database always to make them compatible with existing Django tests.
Test classes that subclass Python’s unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase] need to have
the marker applied in order to access the database.

pytest.mark.urls - override the urlconf

	
@pytest.mark.urls(urls)

	Specify a different settings.ROOT_URLCONF module for the marked tests.

	Parameters:

	urls (str [https://docs.python.org/3/library/stdtypes.html#str]) – The urlconf module to use for the test, e.g. myapp.test_urls. This is
similar to Django’s TestCase.urls attribute.

Example usage:

@pytest.mark.urls('myapp.test_urls')
def test_something(client):
 assert b'Success!' in client.get('/some_url_defined_in_test_urls/').content

pytest.mark.ignore_template_errors - ignore invalid template variables

	
@pytest.mark.ignore_template_errors

	Ignore errors when using the --fail-on-template-vars option, i.e.
do not cause tests to fail if your templates contain invalid variables.

This marker sets the string_if_invalid template option.
See How invalid variables are handled [https://docs.djangoproject.com/en/stable/ref/templates/api/#invalid-template-variables].

Example usage:

@pytest.mark.ignore_template_errors
def test_something(client):
 client('some-url-with-invalid-template-vars')

Fixtures

pytest-django provides some pytest fixtures to provide dependencies for tests.
More information on fixtures is available in the pytest documentation [https://docs.pytest.org/en/stable/reference/fixtures.html#fixtures].

rf - RequestFactory

An instance of a django.test.RequestFactory [https://docs.djangoproject.com/en/stable/topics/testing/advanced/#django.test.RequestFactory].

Example

from myapp.views import my_view

def test_details(rf, admin_user):
 request = rf.get('/customer/details')
 # Remember that when using RequestFactory, the request does not pass
 # through middleware. If your view expects fields such as request.user
 # to be set, you need to set them explicitly.
 # The following line sets request.user to an admin user.
 request.user = admin_user
 response = my_view(request)
 assert response.status_code == 200

async_rf - AsyncRequestFactory

An instance of a django.test.AsyncRequestFactory [https://docs.djangoproject.com/en/stable/topics/testing/advanced/#asyncrequestfactory].

Example

This example uses pytest-asyncio [https://github.com/pytest-dev/pytest-asyncio].

from myapp.views import my_view

@pytest.mark.asyncio
async def test_details(async_rf):
 request = await async_rf.get('/customer/details')
 response = my_view(request)
 assert response.status_code == 200

client - django.test.Client

An instance of a django.test.Client [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.Client].

Example

def test_with_client(client):
 response = client.get('/')
 assert response.content == 'Foobar'

To use client as an authenticated standard user, call its
force_login() [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.Client.force_login] or
login() [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.Client.login] method before accessing a URL:

def test_with_authenticated_client(client, django_user_model):
 username = "user1"
 password = "bar"
 user = django_user_model.objects.create_user(username=username, password=password)
 # Use this:
 client.force_login(user)
 # Or this:
 client.login(username=username, password=password)
 response = client.get('/private')
 assert response.content == 'Protected Area'

async_client - django.test.AsyncClient

An instance of a django.test.AsyncClient [https://docs.djangoproject.com/en/stable/topics/testing/tools/#testing-asynchronous-code].

Example

This example uses pytest-asyncio [https://github.com/pytest-dev/pytest-asyncio].

@pytest.mark.asyncio
async def test_with_async_client(async_client):
 response = await async_client.get('/')
 assert response.content == 'Foobar'

admin_client - django.test.Client logged in as admin

An instance of a django.test.Client [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.Client], logged in as an admin user.

Example

def test_an_admin_view(admin_client):
 response = admin_client.get('/admin/')
 assert response.status_code == 200

Using the admin_client fixture will cause the test to automatically be marked
for database use (no need to specify the django_db() mark).

admin_user - an admin user (superuser)

An instance of a superuser, with username “admin” and password “password” (in
case there is no “admin” user yet).

Using the admin_user fixture will cause the test to automatically be marked
for database use (no need to specify the django_db() mark).

django_user_model

A shortcut to the User model configured for use by the current Django project (aka the model referenced by
settings.AUTH_USER_MODEL [https://docs.djangoproject.com/en/stable/ref/settings/#auth-user-model]).
Use this fixture to make pluggable apps testable regardless what User model is configured
in the containing Django project.

Example

def test_new_user(django_user_model):
 django_user_model.objects.create_user(username="someone", password="something")

django_username_field

This fixture extracts the field name used for the username on the user model, i.e.
resolves to the user model’s USERNAME_FIELD [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.USERNAME_FIELD].
Use this fixture to make pluggable apps testable regardless what the username field
is configured to be in the containing Django project.

db

This fixture will ensure the Django database is set up. Only
required for fixtures that want to use the database themselves. A
test function should normally use the pytest.mark.django_db()
mark to signal it needs the database. This fixture does
not return a database connection object. When you need a Django
database connection or cursor, import it from Django using
from django.db import connection.

transactional_db

This fixture can be used to request access to the database including
transaction support. This is only required for fixtures which need
database access themselves. A test function should normally use the
pytest.mark.django_db() mark with transaction=True to signal
it needs the database.

django_db_reset_sequences

This fixture provides the same transactional database access as
transactional_db, with additional support for reset of auto
increment sequences (if your database supports it). This is only required for
fixtures which need database access themselves. A test function should normally
use the pytest.mark.django_db() mark with transaction=True and
reset_sequences=True.

django_db_serialized_rollback

This fixture triggers rollback emulation [https://docs.djangoproject.com/en/stable/topics/testing/overview/#test-case-serialized-rollback].
This is only required for fixtures which need to enforce this behavior. A test
function should normally use pytest.mark.django_db() with
serialized_rollback=True (and most likely also transaction=True) to
request this behavior.

live_server

This fixture runs a live Django server in a background thread. The
server’s URL can be retrieved using the live_server.url attribute
or by requesting it’s string value: str(live_server). You can
also directly concatenate a string to form a URL: live_server +
'/foo'.

Since the live server and the tests run in different threads, they
cannot share a database transaction. For this reason, live_server
depends on the transactional_db fixture. If tests depend on data
created in data migrations, you should add the
django_db_serialized_rollback fixture.

Note

Combining database access fixtures.

When using multiple database fixtures together, only one of them is
used. Their order of precedence is as follows (the last one wins):

	db

	transactional_db

In addition, using live_server or django_db_reset_sequences will also
trigger transactional database access, and django_db_serialized_rollback
regular database access, if not specified.

settings

This fixture will provide a handle on the Django settings module, and
automatically revert any changes made to the settings (modifications, additions
and deletions).

Example

def test_with_specific_settings(settings):
 settings.USE_TZ = True
 assert settings.USE_TZ

django_assert_num_queries

	
django_assert_num_queries(num, connection=None, info=None)

	
	Parameters:

	
	num – expected number of queries

	connection – optional non-default DB connection

	info (str [https://docs.python.org/3/library/stdtypes.html#str]) – optional info message to display on failure

This fixture allows to check for an expected number of DB queries.

If the assertion failed, the executed queries can be shown by using
the verbose command line option.

It wraps django.test.utils.CaptureQueriesContext and yields the wrapped
CaptureQueriesContext instance.

Example usage:

def test_queries(django_assert_num_queries):
 with django_assert_num_queries(3) as captured:
 Item.objects.create('foo')
 Item.objects.create('bar')
 Item.objects.create('baz')

 assert 'foo' in captured.captured_queries[0]['sql']

If you use type annotations, you can annotate the fixture like this:

from pytest_django import DjangoAssertNumQueries

def test_num_queries(
 django_assert_num_queries: DjangoAssertNumQueries,
):
 ...

django_assert_max_num_queries

	
django_assert_max_num_queries(num, connection=None, info=None)

	
	Parameters:

	
	num – expected maximum number of queries

	connection – optional non-default DB connection

	info (str [https://docs.python.org/3/library/stdtypes.html#str]) – optional info message to display on failure

This fixture allows to check for an expected maximum number of DB queries.

It is a specialized version of django_assert_num_queries.

Example usage:

def test_max_queries(django_assert_max_num_queries):
 with django_assert_max_num_queries(2):
 Item.objects.create('foo')
 Item.objects.create('bar')

If you use type annotations, you can annotate the fixture like this:

from pytest_django import DjangoAssertNumQueries

def test_max_num_queries(
 django_assert_max_num_queries: DjangoAssertNumQueries,
):
 ...

django_capture_on_commit_callbacks

	
django_capture_on_commit_callbacks(*, using=DEFAULT_DB_ALIAS, execute=False)

	
	Parameters:

	
	using – The alias of the database connection to capture callbacks for.

	execute – If True, all the callbacks will be called as the context manager exits, if
no exception occurred. This emulates a commit after the wrapped block of
code.

New in version 4.4.

Returns a context manager that captures
transaction.on_commit() [https://docs.djangoproject.com/en/stable/topics/db/transactions/#django.db.transaction.on_commit] callbacks for
the given database connection. It returns a list that contains, on exit of the
context, the captured callback functions. From this list you can make assertions
on the callbacks or call them to invoke their side effects, emulating a commit.

Avoid this fixture in tests using transaction=True; you are not likely to
get useful results.

This fixture is based on Django’s django.test.TestCase.captureOnCommitCallbacks() [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TestCase.captureOnCommitCallbacks]
helper.

Example usage:

def test_on_commit(client, mailoutbox, django_capture_on_commit_callbacks):
 with django_capture_on_commit_callbacks(execute=True) as callbacks:
 response = client.post(
 '/contact/',
 {'message': 'I like your site'},
)

 assert response.status_code == 200
 assert len(callbacks) == 1
 assert len(mailoutbox) == 1
 assert mailoutbox[0].subject == 'Contact Form'
 assert mailoutbox[0].body == 'I like your site'

If you use type annotations, you can annotate the fixture like this:

from pytest_django import DjangoCaptureOnCommitCallbacks

def test_on_commit(
 django_capture_on_commit_callbacks: DjangoCaptureOnCommitCallbacks,
):
 ...

mailoutbox

A clean email outbox to which Django-generated emails are sent.

Example

from django.core import mail

def test_mail(mailoutbox):
 mail.send_mail('subject', 'body', 'from@example.com', ['to@example.com'])
 assert len(mailoutbox) == 1
 m = mailoutbox[0]
 assert m.subject == 'subject'
 assert m.body == 'body'
 assert m.from_email == 'from@example.com'
 assert list(m.to) == ['to@example.com']

This uses the django_mail_patch_dns fixture, which patches
DNS_NAME used by django.core.mail [https://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail] with the value from
the django_mail_dnsname fixture, which defaults to
“fake-tests.example.com”.

Automatic cleanup

pytest-django provides some functionality to assure a clean and consistent environment
during tests.

Clearing of site cache

If django.contrib.sites is in your INSTALLED_APPS, Site cache will
be cleared for each test to avoid hitting the cache and causing the wrong Site
object to be returned by Site.objects.get_current().

Clearing of mail.outbox

mail.outbox will be cleared for each pytest, to give each new test an empty
mailbox to work with. However, it’s more “pytestic” to use the mailoutbox fixture described above
than to access mail.outbox.

FAQ

I see an error saying “could not import myproject.settings”

pytest-django tries to automatically add your project to the Python path by
looking for a manage.py file and adding its path to the Python path.

If this for some reason fails for you, you have to manage your Python paths
explicitly. See the documentation on Managing the Python path explicitly
for more information.

Are Django test tags supported?

Yes, Django test tagging [https://docs.djangoproject.com/en/stable/topics/testing/tools/#topics-tagging-tests] is supported.
The Django test tags are automatically converted to Pytest markers [https://docs.pytest.org/en/stable/example/markers.html#mark-examples].

How can I make sure that all my tests run with a specific locale?

Create a pytest fixture [https://docs.pytest.org/en/stable/reference/fixtures.html#fixtures] that is
automatically run before each test case. To run all tests with the English
locale, put the following code in your project’s
conftest.py [https://docs.pytest.org/en/stable/how-to/writing_plugins.html#plugins] file:

from django.utils.translation import activate

@pytest.fixture(autouse=True)
def set_default_language():
 activate('en')

My tests are not being found. Why?

By default, pytest looks for tests in files named test_*.py (note that
this is not the same as test*.py) and *_test.py. If you have your
tests in files with other names, they will not be collected. Note that
Django’s startapp manage command creates an app_dir/tests.py file.
Also, it is common to put tests under app_dir/tests/views.py, etc.

To find those tests, create a pytest.ini file in your project root and add
an appropriate python_files line to it:

[pytest]
python_files = tests.py test_*.py *_tests.py

See the related pytest docs [https://docs.pytest.org/en/stable/example/pythoncollection.html#changing-naming-conventions] for more details.

When debugging test collection problems, the --collectonly flag and
-rs (report skipped tests) can be helpful.

Does pytest-django work with the pytest-xdist plugin?

Yes. pytest-django supports running tests in parallel with pytest-xdist. Each
process created by xdist gets its own separate database that is used for the
tests. This ensures that each test can run independently, regardless of whether
transactions are tested or not.

How can I use manage.py test with pytest-django?

pytest-django is designed to work with the pytest command, but if you
really need integration with manage.py test, you can create a simple
test runner like this:

class PytestTestRunner:
 """Runs pytest to discover and run tests."""

 def __init__(self, verbosity=1, failfast=False, keepdb=False, **kwargs):
 self.verbosity = verbosity
 self.failfast = failfast
 self.keepdb = keepdb

 @classmethod
 def add_arguments(cls, parser):
 parser.add_argument(
 '--keepdb', action='store_true',
 help='Preserves the test DB between runs.'
)

 def run_tests(self, test_labels, **kwargs):
 """Run pytest and return the exitcode.

 It translates some of Django's test command option to pytest's.
 """
 import pytest

 argv = []
 if self.verbosity == 0:
 argv.append('--quiet')
 if self.verbosity == 2:
 argv.append('--verbose')
 if self.verbosity == 3:
 argv.append('-vv')
 if self.failfast:
 argv.append('--exitfirst')
 if self.keepdb:
 argv.append('--reuse-db')

 argv.extend(test_labels)
 return pytest.main(argv)

Add the path to this class in your Django settings:

TEST_RUNNER = 'my_project.runner.PytestTestRunner'

Usage:

./manage.py test <django args> -- <pytest args>

Note: the pytest-django command line options --ds and --dc are not
compatible with this approach, you need to use the standard Django methods of
setting the DJANGO_SETTINGS_MODULE/DJANGO_CONFIGURATION environment
variables or the --settings command line option.

How can I give database access to all my tests without the django_db marker?

Create an autouse fixture and put it in conftest.py in your project root:

@pytest.fixture(autouse=True)
def enable_db_access_for_all_tests(db):
 pass

How/where can I get help with pytest/pytest-django?

Usage questions can be asked on StackOverflow with the pytest tag [https://stackoverflow.com/search?q=pytest].

If you think you’ve found a bug or something that is wrong in the
documentation, feel free to open an issue on the GitHub project [https://github.com/pytest-dev/pytest-django/issues/] for
pytest-django.

Direct help can be found in the #pytest IRC channel on irc.libera.chat (using an IRC client, via webchat [https://web.libera.chat/#pytest], or via Matrix [https://matrix.to/#/%23pytest:libera.chat]).

Contributing to pytest-django

Like every open-source project, pytest-django is always looking for motivated
individuals to contribute to its source code. However, to ensure the highest
code quality and keep the repository nice and tidy, everybody has to follow a
few rules (nothing major, I promise :))

Community

The fastest way to get feedback on contributions/bugs is usually to open an
issue in the issue tracker [https://github.com/pytest-dev/pytest-django/issues].

Discussions also happen via IRC in #pytest on irc.libera.chat (join using an IRC client, via webchat [https://web.libera.chat/#pytest], or via Matrix [https://matrix.to/#/%23pytest:libera.chat]).
You may also be interested in following @andreaspelme [https://twitter.com/andreaspelme] on Twitter.

In a nutshell

Here’s what the contribution process looks like, in a bullet-points fashion:

	pytest-django is hosted on GitHub [https://www.github.com], at
https://github.com/pytest-dev/pytest-django

	The best method to contribute back is to create an account there and fork
the project. You can use this fork as if it was your own project, and should
push your changes to it.

	When you feel your code is good enough for inclusion, “send us a pull
request [https://help.github.com/send-pull-requests/]”, by using the nice GitHub web interface.

Contributing Code

Getting the source code

	Code will be reviewed and tested by at least one core developer, preferably
by several. Other community members are welcome to give feedback.

	Code must be tested. Your pull request should include unit-tests (that
cover the piece of code you’re submitting, obviously).

	Documentation should reflect your changes if relevant. There is nothing worse
than invalid documentation.

	Usually, if unit tests are written, pass, and your change is relevant, then
your pull request will be merged.

Since we’re hosted on GitHub, pytest-django uses git [https://git-scm.com/] as a version control
system.

The GitHub help [https://help.github.com] is very well written and will get you started on using git
and GitHub in a jiffy. It is an invaluable resource for newbies and oldtimers
alike.

Syntax and conventions

We try to conform to PEP8 [https://www.python.org/dev/peps/pep-0008/] as much as possible. A few highlights:

	Indentation should be exactly 4 spaces. Not 2, not 6, not 8. 4. Also,
tabs are evil.

	We try (loosely) to keep the line length at 79 characters. Generally the rule
is “it should look good in a terminal-based editor” (eg vim), but we try not
be [Godwin’s law] about it.

Process

This is how you fix a bug or add a feature:

	fork [https://github.com/pytest-dev/pytest-django] the repository on GitHub.

	Checkout your fork.

	Hack hack hack, test test test, commit commit commit, test again.

	Push to your fork.

	Open a pull request.

Tests

Having a wide and comprehensive library of unit-tests and integration tests is
of exceeding importance. Contributing tests is widely regarded as a very
prestigious contribution (you’re making everybody’s future work much easier by
doing so). Good karma for you. Cookie points. Maybe even a beer if we meet in
person :)

Generally tests should be:

	Unitary (as much as possible). I.E. should test as much as possible only on
one function/method/class. That’s the very definition of unit tests.
Integration tests are also interesting obviously, but require more time to
maintain since they have a higher probability of breaking.

	Short running. No hard numbers here, but if your one test doubles the time it
takes for everybody to run them, it’s probably an indication that you’re
doing it wrong.

In a similar way to code, pull requests will be reviewed before pulling
(obviously), and we encourage discussion via code review (everybody learns
something this way) or in the IRC channel.

Running the tests

There is a Makefile in the repository which aids in setting up a virtualenv
and running the tests:

$ make test

You can manually create the virtualenv using:

$ make testenv

This will install a virtualenv with pytest and the latest stable version of
Django. The virtualenv can then be activated with:

$ source bin/activate

Then, simply invoke pytest to run the test suite:

$ pytest --ds=pytest_django_test.settings_sqlite

tox can be used to run the test suite under different configurations by
invoking:

$ tox

There is a huge number of unique test configurations (98 at the time of
writing), running them all will take a long time. All valid configurations can
be found in tox.ini. To test against a few of them, invoke tox with the -e
flag:

$ tox -e py38-dj32-postgres,py310-dj41-mysql_innodb

This will run the tests on Python 3.8/Django 3.2/PostgeSQL and Python
3.10/Django 4.1/MySQL.

Measuring test coverage

Some of the tests are executed in subprocesses. Because of that regular
coverage measurements (using pytest-cov plugin) are not reliable.

If you want to measure coverage you’ll need to create .pth file as described in
subprocess section of coverage documentation [https://coverage.readthedocs.io/en/latest/subprocess.html]. If you’re using
editable mode you should uninstall pytest_django (using pip)
for the time of measuring coverage.

You’ll also need mysql and postgres databases. There are predefined settings
for each database in the tests directory. You may want to modify these files
but please don’t include them in your pull requests.

After this short initial setup you’re ready to run tests:

$ COVERAGE_PROCESS_START=`pwd`/pyproject.toml COVERAGE_FILE=`pwd`/.coverage pytest --ds=pytest_django_test.settings_postgres

You should repeat the above step for sqlite and mysql before the next step.
This step will create a lot of .coverage files with additional suffixes for
every process.

The final step is to combine all the files created by different processes and
generate the html coverage report:

$ coverage combine
$ coverage html

Your coverage report is now ready in the htmlcov directory.

Continuous integration

GitHub Actions [https://github.com/features/actions] is used to automatically run all tests against all supported versions
of Python, Django and different database backends.

The pytest-django Actions [https://github.com/pytest-dev/pytest-django/actions] page shows the latest test run. The CI will
automatically pick up pull requests, test them and report the result directly
in the pull request.

Contributing Documentation

Perhaps considered “boring” by hard-core coders, documentation is sometimes
even more important than code! This is what brings fresh blood to a project,
and serves as a reference for oldtimers. On top of this, documentation is the
one area where less technical people can help most - you just need to write a
semi-decent English. People need to understand you. We don’t care about style
or correctness.

Documentation should be:

	We use Sphinx [https://www.sphinx-doc.org/]/restructuredText [https://docutils.sourceforge.io/docs/ref/rst/introduction.html]. So obviously this is the format you
should use :) File extensions should be .rst.

	Written in English. We can discuss how it would bring more people to the
project to have a Klingon translation or anything, but that’s a problem we
will ask ourselves when we already have a good documentation in English.

	Accessible. You should assume the reader to be moderately familiar with
Python and Django, but not anything else. Link to documentation of libraries
you use, for example, even if they are “obvious” to you (South is the first
example that comes to mind - it’s obvious to any Django programmer, but not
to any newbie at all).
A brief description of what it does is also welcome.

Pulling of documentation is pretty fast and painless. Usually somebody goes
over your text and merges it, since there are no “breaks” and that GitHub
parses rst files automagically it’s really convenient to work with.

Also, contributing to the documentation will earn you great respect from the
core developers. You get good karma just like a test contributor, but you get
double cookie points. Seriously. You rock.

Note

This very document is based on the contributing docs of the django CMS [https://www.django-cms.org/]
project. Many thanks for allowing us to steal it!

Changelog

v4.8.0 (2024-01-30)

Improvements

	Add pytest.asserts.assertMessages() to mimic the behaviour of the
django.contrib.messages.test.MessagesTestMixin.assertMessages function
for Django versions >= 5.0.

Bugfixes

	Fix –help/–version crash in a partially configured app.

v4.7.0 (2023-11-08)

Compatibility

	Official Django 5.0 support.

	Official Python 3.12 support.

Improvements

	The Django test tags from the previous release now works on any
SimpleTestCase [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.SimpleTestCase] (i.e. any Django test framework test
class), not just TransactionTestCase [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.TransactionTestCase] classes.

	Some improvements for those of us who like to type their tests:

	Add pytest_django.DjangoAssertNumQueries for typing
django_assert_num_queries and
django_assert_max_num_queries.

	Add pytest_django.DjangoCaptureOnCommitCallbacks for typing
django_capture_on_commit_callbacks.

	Add pytest_django.DjangoDbBlocker for typing
django_db_blocker.

v4.6.0 (2023-10-30)

Compatibility

	Official Django 4.1 & 4.2 support.

	Official Python 3.11 support.

	Drop support for Python version 3.5, 3.6 & 3.7.

	Drop official support for Django 4.0.

	Drop support for pytest < 7.

Improvements

	Add support for setting available_apps [https://docs.djangoproject.com/en/stable/topics/testing/advanced/#django.test.TransactionTestCase.available_apps] in the django_db marker.

	Convert Django test tags [https://docs.djangoproject.com/en/stable/topics/testing/tools/#topics-tagging-tests] to Pytest
markers [https://docs.pytest.org/en/stable/example/markers.html#mark-examples].

	Show Django’s version in the pytest django report header.

	Add precise pytest_django.asserts.assertQuerySetEqual typing.

Bugfixes

	Fix bug where the effect of @pytest.mark.ignore_template_errors was not reset when using
--fail-on-template-vars.

v4.5.2 (2021-12-07)

Bugfixes

	Fix regression in v4.5.0 - pytest.mark.django_db(reset_sequence=True) now
implies transaction=True again.

v4.5.1 (2021-12-02)

Bugfixes

	Fix regression in v4.5.0 - database tests inside (non-unittest) classes were
not ordered correctly to run before non-database tests, same for transactional
tests before non-transactional tests.

v4.5.0 (2021-12-01)

Improvements

	Add support for rollback emulation/serialized rollback [https://docs.djangoproject.com/en/stable/topics/testing/overview/#test-case-serialized-rollback]. The pytest.mark.django_db() marker
has a new serialized_rollback option, and a
django_db_serialized_rollback fixture is added.

	Official Python 3.10 support.

	Official Django 4.0 support (tested against 4.0rc1 at the time of release).

	Drop official Django 3.0 support. Django 2.2 is still supported, and 3.0
will likely keep working until 2.2 is dropped, but it’s not tested.

	Added pyproject.toml file.

	Skip Django’s setUpTestData mechanism in pytest-django tests. It is not
used for those, and interferes with some planned features. Note that this
does not affect setUpTestData in unittest tests (test classes which
inherit from Django’s TestCase).

Bugfixes

	Fix live_server when using an in-memory SQLite database.

	Fix typing of assertTemplateUsed and assertTemplateNotUsed.

v4.4.0 (2021-06-06)

Improvements

	Add a fixture django_capture_on_commit_callbacks to capture
transaction.on_commit() [https://docs.djangoproject.com/en/stable/topics/db/transactions/#django.db.transaction.on_commit] callbacks
in tests.

v4.3.0 (2021-05-15)

Improvements

	Add experimental multiple databases (multi db) support.

	Add type annotations. If you previously excluded pytest_django from
your type-checker, you can remove the exclusion.

	Documentation improvements.

v4.2.0 (2021-04-10)

Improvements

	Official Django 3.2 support.

	Documentation improvements.

Bugfixes

	Disable atomic durability check on non-transactional tests (#910).

v4.1.0 (2020-10-22)

Improvements

	Add the async_client and async_rf fixtures (#864).

	Add django_debug_mode to configure how DEBUG is set in tests (#228).

	Documentation improvements.

Bugfixes

	Make admin_user work for custom user models without an email field.

v4.0.0 (2020-10-16)

Compatibility

This release contains no breaking changes, except dropping compatibility
with some older/unsupported versions.

	Drop support for Python versions before 3.5 (#868).

Previously 2.7 and 3.4 were supported. Running pip install pytest-django
on Python 2.7 or 3.4 would continue to install the compatible 3.x series.

	Drop support for Django versions before 2.2 (#868).

Previously Django>=1.8 was supported.

	Drop support for pytest versions before 5.4 (#868).

Previously pytest>=3.6 was supported.

Improvements

	Officially support Python 3.9.

	Add pytest_django.__version__ (#880).

	Minor documentation improvements (#882).

Bugfixes

	Make the admin_user and admin_client fixtures compatible with custom
user models which don’t have a username field (#457).

	Change the admin_user fixture to use get_by_natural_key() to get the
user instead of directly using USERNAME_FIELD, in case it is overridden,
and to match Django (#879).

Misc

	Fix pytest-django’s own tests failing due to some deprecation warnings
(#875).

v3.10.0 (2020-08-25)

Improvements

	Officially support Django 3.1

	Preliminary support for upcoming Django 3.2

	Support for pytest-xdist 2.0

Misc

	Fix running pytest-django’s own tests against pytest 6.0 (#855)

v3.9.0 (2020-03-31)

Improvements

	Improve test ordering with Django test classes (#830)

	Remove import of pkg_resources for parsing pytest version (performance) (#826)

Bugfixes

	Work around unittest issue with pytest 5.4.{0,1} (#825)

	Don’t break –failed-first when re-ordering tests (#819, #820)

	pytest_addoption: use group.addoption (#833)

Misc

	Remove Django version from –nomigrations heading (#822)

	docs: changelog: prefix headers with v for permalink anchors

	changelog: add custom/fixed anchor for last version

	setup.py: add Changelog to project_urls

v3.8.0 (2020-01-14)

Improvements

	Make Django’s assertion helpers available in pytest_django.asserts (#709).

	Report django-configurations setting (#791)

v3.7.0 (2019-11-09)

Bugfixes

	Monkeypatch pytest to not use TestCase.debug with unittests, instead
of patching it into Django (#782).

	Work around pytest crashing due to pytest.fail being used from within the
DB blocker, and pytest trying to display an object representation involving
DB access (#781). pytest-django uses a RuntimeError now instead.

v3.6.0 (2019-10-17)

Features

	Rename test databases when running parallel Tox (#678, #680)

Bugfixes

	Django unittests: restore “debug” function (#769, #771)

Misc

	Improve/harden internal tests / infrastructure.

v3.5.1 (2019-06-29)

Bugfixes

	Fix compatibility with pytest 5.x (#751)

v3.5.0 (2019-06-03)

Features

	Run tests in the same order as Django (#223)

	Use verbosity=0 with disabled migrations (#729, #730)

Bugfixes

	django_db_setup: warn instead of crash with teardown errors (#726)

Misc

	tests: fix test_sqlite_database_renamed (#739, #741)

	tests/conftest.py: move import of db_helpers (#737)

	Cleanup/improve coverage, mainly with tests (#706)

	Slightly revisit unittest handling (#740)

v3.4.8 (2019-02-26)

Bugfixes

	Fix DB renaming fixture for Multi-DB environment with SQLite (#679)

v3.4.7 (2019-02-03)

Bugfixes

	Fix disabling/handling of unittest methods with pytest 4.2+ (#700)

v3.4.6 (2019-02-01)

Bugfixes

	django_find_project: add cwd as fallback always (#690)

Misc

	Enable tests for Django 2.2 and add classifier (#693)

	Disallow pytest 4.2.0 in install_requires (#697)

v3.4.5 (2019-01-07)

Bugfixes

	Use request.config instead of pytest.config (#677)

	admin_user: handle “email” username_field (#676)

Misc

	Minor doc fixes (#674)

	tests: fix for pytest 4 (#675)

v3.4.4 (2018-11-13)

Bugfixes

	Refine the django.conf module check to see if the settings really are
configured (#668).

	Avoid crash after OSError during Django path detection (#664).

Features

	Add parameter info to fixture assert_num_queries to display additional message on failure (#663).

Docs

	Improve doc for django_assert_num_queries/django_assert_max_num_queries.

	Add warning about sqlite specific snippet + fix typos (#666).

Misc

	MANIFEST.in: include tests for downstream distros (#653).

	Ensure that the LICENSE file is included in wheels (#665).

	Run black on source.

v3.4.3 (2018-09-16)

Bugfixes

	Fix OSError with arguments containing :: on Windows (#641).

v3.4.2 (2018-08-20)

Bugfixes

	Changed dependency for pathlib to pathlib2 (#636).

	Fixed code for inserting the project to sys.path with pathlib to use an
absolute path, regression in 3.4.0 (#637, #638).

v3.4.0 (2018-08-16)

Features

	Added new fixture django_assert_max_num_queries (#547).

	Added support for connection and returning the wrapped context manager
with django_assert_num_queries (#547).

	Added support for resetting sequences via
django_db_reset_sequences (#619).

Bugfixes

	Made sure to not call django.setup() multiple times (#629, #531).

Compatibility

	Removed py dependency, use pathlib instead (#631).

v3.3.3 (2018-07-26)

Bug fixes

	Fixed registration of ignore_template_errors() marker,
which is required with pytest --strict (#609).

	Fixed another regression with unittest (#624, #625).

Docs

	Use sphinx_rtf_theme (#621).

	Minor fixes.

v3.3.2 (2018-06-21)

Bug fixes

	Fixed test for classmethod with Django TestCases again (#618,
introduced in #598 (3.3.0)).

Compatibility

	Support Django 2.1 (no changes necessary) (#614).

v3.3.0 (2018-06-15)

Features

	Added new fixtures django_mail_dnsname and django_mail_patch_dns,
used by mailoutbox to monkeypatch the DNS_NAME used in
django.core.mail [https://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail] to improve performance and
reproducibility.

Bug fixes

	Fixed test for classmethod with Django TestCases (#597, #598).

	Fixed RemovedInPytest4Warning: MarkInfo objects are deprecated (#596, #603)

	Fixed scope of overridden settings with live_server fixture: previously they
were visible to following tests (#612).

Compatibility

	The required pytest version changed from >=2.9 to >=3.6.

v3.2.1

	Fixed automatic deployment to PyPI.

v3.2.0

Features

	Added new fixture django_assert_num_queries for testing the number of
database queries (#387).

	–fail-on-template-vars has been improved and should now return
full/absolute path (#470).

	Support for setting the live server port (#500).

	unittest: help with setUpClass not being a classmethod (#544).

Bug fixes

	Fix –reuse-db and –create-db not working together (#411).

	Numerous fixes in the documentation. These should not go unnoticed 🌟

Compatibility

	Support for Django 2.0 has been added.

	Support for Django before 1.8 has been dropped.

v3.1.2

Bug fixes

	Auto clearing of mail.outbox has been re-introduced to not break
functionality in 3.x.x release. This means that Compatibility issues
mentioned in the 3.1.0 release are no longer present. Related issue:
pytest-django issue [https://github.com/pytest-dev/pytest-django/issues/433]

v3.1.1

Bug fixes

	Workaround –pdb interaction with Django TestCase. The issue is caused by
Django TestCase not implementing TestCase.debug() properly but was brought to
attention with recent changes in pytest 3.0.2. Related issues:
pytest issue [https://github.com/pytest-dev/pytest/issues/1977],
Django issue [https://code.djangoproject.com/ticket/27391]

v3.1.0

Features

	Added new function scoped fixture mailoutbox that gives access to
djangos mail.outbox. The will clean/empty the mail.outbox to
assure that no old mails are still in the outbox.

	If django.contrib.sites is in your INSTALLED_APPS, Site cache will
be cleared for each test to avoid hitting the cache and cause wrong Site
object to be returned by Site.objects.get_current().

Compatibility

	IMPORTANT: the internal autouse fixture _django_clear_outbox has been
removed. If you have relied on this to get an empty outbox for your
test, you should change tests to use the mailoutbox fixture instead.
See documentation of mailoutbox fixture for usage. If you try to
access mail.outbox directly, AssertionError will be raised. If you
previously relied on the old behaviour and do not want to change your
tests, put this in your project conftest.py:

@pytest.fixture(autouse=True)
def clear_outbox():
 from django.core import mail
 mail.outbox = []

v3.0.0

Bug fixes

	Fix error when Django happens to be imported before pytest-django runs.
Thanks to Will Harris for the bug report [https://github.com/pytest-dev/pytest-django/issues/289].

Features

	Added a new option --migrations to negate a default usage of
--nomigrations.

	The previously internal pytest-django fixture that handles database creation
and setup has been refactored, refined and made a public API.

This opens up more flexibility and advanced use cases to configure the test
database in new ways.

See Advanced database configuration for more information on the new
fixtures and example use cases.

Compatibility

	Official for the pytest 3.0.0 (2.9.2 release should work too, though). The
documentation is updated to mention pytest instead of py.test.

	Django versions 1.4, 1.5 and 1.6 is no longer supported. The supported
versions are now 1.7 and forward. Django master is supported as of
2016-08-21.

	pytest-django no longer supports Python 2.6.

	Specifying the DJANGO_TEST_LIVE_SERVER_ADDRESS environment variable is no
longer supported. Use DJANGO_LIVE_TEST_SERVER_ADDRESS instead.

	Ensuring accidental database access is now stricter than before. Previously
database access was prevented on the cursor level. To be safer and prevent
more cases, it is now prevented at the connection level. If you previously
had tests which interacted with the databases without a database cursor, you
will need to mark them with the pytest.mark.django_db marker or
request the db fixture.

	The previously undocumented internal fixtures _django_db_setup,
_django_cursor_wrapper have been removed in favour of the new public
fixtures. If you previously relied on these internal fixtures, you must
update your code. See Advanced database configuration for more
information on the new fixtures and example use cases.

v2.9.1

Bug fixes

	Fix regression introduced in 2.9.0 that caused TestCase subclasses with
mixins to cause errors. Thanks MikeVL for the bug report [https://github.com/pytest-dev/pytest-django/issues/280].

v2.9.0

v2.9.0 focus on compatibility with Django 1.9 and master as well as pytest 2.8.1
and Python 3.5

Features

	--fail-on-template-vars - fail tests for invalid variables in templates.
Thanks to Johannes Hoppe for idea and implementation. Thanks Daniel Hahler
for review and feedback.

Bug fixes

	Ensure urlconf is properly reset when using @pytest.mark.urls. Thanks to
Sarah Bird, David Szotten, Daniel Hahler and Yannick PÉROUX for patch and
discussions. Fixes issue #183 [https://github.com/pytest-dev/pytest-django/issues/183].

	Call setUpClass() in Django TestCase properly when test class is
inherited multiple places. Thanks to Benedikt Forchhammer for report and
initial test case. Fixes issue #265 [https://github.com/pytest-dev/pytest-django/issues/265].

Compatibility

	Settings defined in pytest.ini/tox.ini/setup.cfg used to override
DJANGO_SETTINGS_MODULE defined in the environment. Previously the order was
undocumented. Now, instead the settings from the environment will be used
instead. If you previously relied on overriding the environment variable,
you can instead specify addopts = --ds=yourtestsettings in the ini-file
which will use the test settings. See PR #199 [https://github.com/pytest-dev/pytest-django/pull/199].

	Support for Django 1.9.

	Support for Django master (to be 1.10) as of 2015-10-06.

	Drop support for Django 1.3. While pytest-django supports a wide range of
Django versions, extended for Django 1.3 was dropped in february 2013.

v2.8.0

Features

	pytest’s verbosity is being used for Django’s code to setup/teardown the test
database (#172).

	Added a new option –nomigrations to avoid running Django 1.7+ migrations
when constructing the test database. Huge thanks to Renan Ivo for complete
patch, tests and documentation.

Bug fixes

	Fixed compatibility issues related to Django 1.8’s
setUpClass/setUpTestData. Django 1.8 is now a fully supported version.
Django master as of 2014-01-18 (the Django 1.9 branch) is also supported.

v2.7.0

Features

	New fixtures: admin_user, django_user_model and
django_username_field (#109).

	Automatic discovery of Django projects to make it easier for new users. This
change is slightly backward incompatible, if you encounter problems with it,
the old behaviour can be restored by adding this to pytest.ini,
setup.cfg or tox.ini:

[pytest]
django_find_project = false

Please see the Managing the Python path section for more information.

Bugfixes

	Fix interaction between db and transaction_db fixtures (#126).

	Fix admin client with custom user models (#124). Big thanks to Benjamin
Hedrich and Dmitry Dygalo for patch and tests.

	Fix usage of South migrations, which were unconditionally disabled previously
(#22).

	Fixed #119, #134: Call django.setup() in Django >=1.7 directly after
settings is loaded to ensure proper loading of Django applications. Thanks to
Ionel Cristian Mărieș, Daniel Hahler, Tymur Maryokhin, Kirill SIbirev, Paul
Collins, Aymeric Augustin, Jannis Leidel, Baptiste Mispelon and Anatoly
Bubenkoff for report, discussion and feedback.

	The `live_server` fixture can now serve static files also for Django>=1.7
if the django.contrib.staticfiles app is installed. (#140).

	DJANGO_LIVE_TEST_SERVER_ADDRESS environment variable is read instead
of DJANGO_TEST_LIVE_SERVER_ADDRESS. (#140)

v2.6.2

	Fixed a bug that caused doctests to runs. Thanks to @jjmurre for the patch

	Fixed issue #88 - make sure to use SQLite in memory database when running
with pytest-xdist.

v2.6.1

This is a bugfix/support release with no new features:

	Added support for Django 1.7 beta and Django master as of 2014-04-16.
pytest-django is now automatically tested against the latest git master
version of Django.

	Support for MySQL with MyISAM tables. Thanks to Zach Kanzler and Julen Ruiz
Aizpuru for fixing this. This fixes issue #8 #64.

v2.6.0

	Experimental support for Django 1.7 / Django master as of 2014-01-19.

pytest-django is now automatically tested against the latest git version of
Django. The support is experimental since Django 1.7 is not yet released, but
the goal is to always be up to date with the latest Django master

v2.5.1

Invalid release accidentally pushed to PyPI (identical to 2.6.1). Should not be
used - use 2.6.1 or newer to avoid confusion.

v2.5.0

	Python 2.5 compatibility dropped. py.test 2.5 dropped support for Python 2.5,
therefore it will be hard to properly support in pytest-django. The same
strategy as for pytest itself is used: No code will be changed to prevent
Python 2.5 from working, but it will not be actively tested.

	pytest-xdist support: it is now possible to run tests in parallel. Just use
pytest-xdist as normal (pass -n to py.test). One database will be created for
each subprocess so that tests run independent from each other.

v2.4.0

	Support for py.test 2.4 pytest_load_initial_conftests. This makes it possible
to import Django models in project conftest.py files, since pytest-django
will be initialized before the conftest.py is loaded.

v2.3.1

	Support for Django 1.5 custom user models, thanks to Leonardo Santagada.

v2.3.0

	Support for configuring settings via django-configurations. Big thanks to
Donald Stufft for this feature!

v2.2.1

	Fixed an issue with the settings fixture when used in combination with
django-appconf. It now uses pytest’s monkeypatch internally and should
be more robust.

v2.2.0

	Python 3 support. pytest-django now supports Python 3.2 and 3.3 in addition
to 2.5-2.7. Big thanks to Rafal Stozek for making this happen!

v2.1.0

	Django 1.5 support. pytest-django is now tested against 1.5 for Python
2.6-2.7. This is the first step towards Python 3 support.

v2.0.1

	Fixed #24/#25: Make it possible to configure Django via
django.conf.settings.configure().

	Fixed #26: Don’t set DEBUG_PROPAGATE_EXCEPTIONS = True for test runs. Django
does not change this setting in the default test runner, so pytest-django
should not do it either.

v2.0.0

This release is backward incompatible. The biggest change is the need
to add the pytest.mark.django_db to tests which require database
access.

Finding such tests is generally very easy: just run your test suite, the
tests which need database access will fail. Add pytestmark =
pytest.mark.django_db to the module/class or decorate them with
@pytest.mark.django_db.

Most of the internals have been rewritten, exploiting py.test’s new
fixtures API. This release would not be possible without Floris
Bruynooghe who did the port to the new fixture API and fixed a number of
bugs.

The tests for pytest-django itself has been greatly improved, paving the
way for easier additions of new and exciting features in the future!

	Semantic version numbers will now be used for releases, see https://semver.org/.

	Do not allow database access in tests by default. Introduce
pytest.mark.django_db to enable database access.

	Large parts re-written using py.test’s 2.3 fixtures API (issue #9).

	Fixes issue #17: Database changes made in fixtures or funcargs
will now be reverted as well.

	Fixes issue 21: Database teardown errors are no longer hidden.

	Fixes issue 16: Database setup and teardown for non-TestCase
classes works correctly.

	pytest.urls() is replaced by the standard marking API and is now
used as pytest.mark.urls()

	Make the plugin behave gracefully without DJANGO_SETTINGS_MODULE
specified. py.test will still work and tests needing django
features will skip (issue #3).

	Allow specifying of DJANGO_SETTINGS_MODULE on the command line
(--ds=settings) and py.test ini configuration file as well as the
environment variable (issue #3).

	Deprecate the transaction_test_case decorator, this is now
integrated with the django_db mark.

v1.4

	Removed undocumented pytest.load_fixture: If you need this feature, just use
django.management.call_command('loaddata', 'foo.json') instead.

	Fixed issue with RequestFactory in Django 1.3.

	Fixed issue with RequestFactory in Django 1.3.

v1.3

	Added --reuse-db and --create-db to allow database re-use. Many
thanks to django-nose [https://github.com/jbalogh/django-nose] for
code and inspiration for this feature.

v1.2.2

	Fixed Django 1.3 compatibility.

v1.2.1

	Disable database access and raise errors when using –no-db and accessing
the database by accident.

v1.2

	Added the --no-db command line option.

v1.1.1

	Flush tables after each test run with transaction_test_case instead of before.

v1.1

	The initial release of this fork from Ben Firshman original project [https://github.com/bfirsh/pytest_django]

	Added documentation

	Uploaded to PyPI for easy installation

	Added the transaction_test_case decorator for tests that needs real transactions

	Added initial implementation for live server support via a funcarg (no docs yet, it might change!)

Index

 A
 | B
 | C
 | D
 | F
 | L
 | M
 | P
 | R
 | S
 | T
 | U

A

 	
 	
 admin_client

 	fixture

 	
 admin_user

 	fixture

 	
 	
 async_client

 	fixture

 	
 async_rf

 	fixture

B

 	
 	block() (pytest_django.DjangoDbBlocker.django_db_blocker method)

 	
 built-in function

 	django_assert_max_num_queries()

 	django_assert_num_queries()

 	django_capture_on_commit_callbacks()

 	pytest.mark.django_db()

 	pytest.mark.ignore_template_errors()

 	pytest.mark.urls()

C

 	
 	
 client

 	fixture

D

 	
 	
 db

 	fixture

 	
 django_assert_max_num_queries

 	fixture

 	
 django_assert_max_num_queries()

 	built-in function

 	
 django_assert_num_queries

 	fixture

 	
 django_assert_num_queries()

 	built-in function

 	
 django_capture_on_commit_callbacks

 	fixture

 	
 django_capture_on_commit_callbacks()

 	built-in function

 	
 django_db_blocker

 	fixture

 	
 django_db_createdb

 	fixture

 	
 django_db_keepdb

 	fixture

 	
 	
 django_db_modify_db_settings

 	fixture

 	
 django_db_modify_db_settings_parallel_suffix

 	fixture

 	
 django_db_modify_db_settings_tox_suffix

 	fixture

 	
 django_db_modify_db_settings_xdist_suffix

 	fixture

 	
 django_db_reset_sequences

 	fixture

 	
 django_db_serialized_rollback

 	fixture

 	
 django_db_setup

 	fixture

 	
 django_db_use_migrations

 	fixture

 	
 django_user_model

 	fixture

 	
 django_username_field

 	fixture

F

 	
 	
 fixture

 	admin_client

 	admin_user

 	async_client

 	async_rf

 	client

 	db

 	django_assert_max_num_queries

 	django_assert_num_queries

 	django_capture_on_commit_callbacks

 	django_db_blocker

 	django_db_createdb

 	django_db_keepdb

 	django_db_modify_db_settings

 	django_db_modify_db_settings_parallel_suffix

 	django_db_modify_db_settings_tox_suffix

 	django_db_modify_db_settings_xdist_suffix

 	django_db_reset_sequences

 	django_db_serialized_rollback

 	django_db_setup

 	django_db_use_migrations

 	django_user_model

 	django_username_field

 	live_server

 	mailoutbox

 	rf

 	settings

 	transactional_db

L

 	
 	
 live_server

 	fixture

M

 	
 	
 mailoutbox

 	fixture

P

 	
 	
 pytest.mark.django_db()

 	built-in function

 	
 pytest.mark.ignore_template_errors()

 	built-in function

 	
 	
 pytest.mark.urls()

 	built-in function

 	pytest_django.DjangoDbBlocker (built-in class)

R

 	
 	restore() (pytest_django.DjangoDbBlocker.django_db_blocker method)

 	
 	
 rf

 	fixture

S

 	
 	
 settings

 	fixture

T

 	
 	
 transactional_db

 	fixture

U

 	
 	unblock() (pytest_django.DjangoDbBlocker.django_db_blocker method)

 nav.xhtml

 Table of Contents

 		
 pytest-django Documentation

 		
 Getting started with pytest and pytest-django

 		
 Introduction

 		
 Talks, articles and blog posts

 		
 Step 1: Installation

 		
 Step 2: Point pytest to your Django settings

 		
 Step 3: Run your test suite

 		
 Next steps

 		
 Stuck? Need help?

 		
 Configuring Django settings

 		
 The environment variable DJANGO_SETTINGS_MODULE

 		
 Command line option –ds=SETTINGS

 		
 pytest.ini settings

 		
 pyproject.toml settings

 		
 Order of choosing settings

 		
 Using django-configurations

 		
 Using django.conf.settings.configure()

 		
 Overriding individual settings

 		
 Changing your app before Django gets set up

 		
 Managing the Python path

 		
 Automatic looking for Django projects

 		
 Managing the Python path explicitly

 		
 Managing your project with virtualenv, pip and editable mode

 		
 Using pytest’s pythonpath option

 		
 Usage and invocations

 		
 Basic usage

 		
 Additional command line options

 		
 –fail-on-template-vars - fail for invalid variables in templates

 		
 Additional pytest.ini settings

 		
 django_debug_mode - change how DEBUG is set

 		
 Running tests in parallel with pytest-xdist

 		
 Database access

 		
 Enabling database access in tests

 		
 Testing transactions

 		
 Tests requiring multiple databases

 		
 –reuse-db - reuse the testing database between test runs

 		
 –create-db - force re creation of the test database

 		
 Example work flow with –reuse-db and –create-db.

 		
 –no-migrations - Disable Django migrations

 		
 Advanced database configuration

 		
 Fixtures

 		
 Examples

 		
 Django helpers

 		
 Assertions

 		
 Markers

 		
 pytest.mark.django_db - request database access

 		
 pytest.mark.urls - override the urlconf

 		
 pytest.mark.ignore_template_errors - ignore invalid template variables

 		
 Fixtures

 		
 rf - RequestFactory

 		
 async_rf - AsyncRequestFactory

 		
 client - django.test.Client

 		
 async_client - django.test.AsyncClient

 		
 admin_client - django.test.Client logged in as admin

 		
 admin_user - an admin user (superuser)

 		
 django_user_model

 		
 django_username_field

 		
 db

 		
 transactional_db

 		
 django_db_reset_sequences

 		
 django_db_serialized_rollback

 		
 live_server

 		
 settings

 		
 django_assert_num_queries

 		
 django_assert_max_num_queries

 		
 django_capture_on_commit_callbacks

 		
 mailoutbox

 		
 Automatic cleanup

 		
 Clearing of site cache

 		
 Clearing of mail.outbox

 		
 FAQ

 		
 I see an error saying “could not import myproject.settings”

 		
 Are Django test tags supported?

 		
 How can I make sure that all my tests run with a specific locale?

 		
 My tests are not being found. Why?

 		
 Does pytest-django work with the pytest-xdist plugin?

 		
 How can I use manage.py test with pytest-django?

 		
 How can I give database access to all my tests without the django_db marker?

 		
 How/where can I get help with pytest/pytest-django?

 		
 Contributing to pytest-django

 		
 Community

 		
 In a nutshell

 		
 Contributing Code

 		
 Getting the source code

 		
 Syntax and conventions

 		
 Process

 		
 Tests

 		
 Contributing Documentation

 		
 Changelog

 		
 v4.8.0 (2024-01-30)

 		
 Improvements

 		
 Bugfixes

 		
 v4.7.0 (2023-11-08)

 		
 Compatibility

 		
 Improvements

 		
 v4.6.0 (2023-10-30)

 		
 Compatibility

 		
 Improvements

 		
 Bugfixes

 		
 v4.5.2 (2021-12-07)

 		
 Bugfixes

 		
 v4.5.1 (2021-12-02)

 		
 Bugfixes

 		
 v4.5.0 (2021-12-01)

 		
 Improvements

 		
 Bugfixes

 		
 v4.4.0 (2021-06-06)

 		
 Improvements

 		
 v4.3.0 (2021-05-15)

 		
 Improvements

 		
 v4.2.0 (2021-04-10)

 		
 Improvements

 		
 Bugfixes

 		
 v4.1.0 (2020-10-22)

 		
 Improvements

 		
 Bugfixes

 		
 v4.0.0 (2020-10-16)

 		
 Compatibility

 		
 Improvements

 		
 Bugfixes

 		
 Misc

 		
 v3.10.0 (2020-08-25)

 		
 Improvements

 		
 Misc

 		
 v3.9.0 (2020-03-31)

 		
 Improvements

 		
 Bugfixes

 		
 Misc

 		
 v3.8.0 (2020-01-14)

 		
 Improvements

 		
 v3.7.0 (2019-11-09)

 		
 Bugfixes

 		
 v3.6.0 (2019-10-17)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 v3.5.1 (2019-06-29)

 		
 Bugfixes

 		
 v3.5.0 (2019-06-03)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 v3.4.8 (2019-02-26)

 		
 Bugfixes

 		
 v3.4.7 (2019-02-03)

 		
 Bugfixes

 		
 v3.4.6 (2019-02-01)

 		
 Bugfixes

 		
 Misc

 		
 v3.4.5 (2019-01-07)

 		
 Bugfixes

 		
 Misc

 		
 v3.4.4 (2018-11-13)

 		
 Bugfixes

 		
 Features

 		
 Docs

 		
 Misc

 		
 v3.4.3 (2018-09-16)

 		
 Bugfixes

 		
 v3.4.2 (2018-08-20)

 		
 Bugfixes

 		
 v3.4.0 (2018-08-16)

 		
 Features

 		
 Bugfixes

 		
 Compatibility

 		
 v3.3.3 (2018-07-26)

 		
 Bug fixes

 		
 Docs

 		
 v3.3.2 (2018-06-21)

 		
 Bug fixes

 		
 Compatibility

 		
 v3.3.0 (2018-06-15)

 		
 Features

 		
 Bug fixes

 		
 Compatibility

 		
 v3.2.1

 		
 v3.2.0

 		
 Features

 		
 Bug fixes

 		
 Compatibility

 		
 v3.1.2

 		
 Bug fixes

 		
 v3.1.1

 		
 Bug fixes

 		
 v3.1.0

 		
 Features

 		
 Compatibility

 		
 v3.0.0

 		
 Bug fixes

 		
 Features

 		
 Compatibility

 		
 v2.9.1

 		
 Bug fixes

 		
 v2.9.0

 		
 Features

 		
 Bug fixes

 		
 Compatibility

 		
 v2.8.0

 		
 Features

 		
 Bug fixes

 		
 v2.7.0

 		
 Features

 		
 Bugfixes

 		
 v2.6.2

 		
 v2.6.1

 		
 v2.6.0

 		
 v2.5.1

 		
 v2.5.0

 		
 v2.4.0

 		
 v2.3.1

 		
 v2.3.0

 		
 v2.2.1

 		
 v2.2.0

 		
 v2.1.0

 		
 v2.0.1

 		
 v2.0.0

 		
 v1.4

 		
 v1.3

 		
 v1.2.2

 		
 v1.2.1

 		
 v1.2

 		
 v1.1.1

 		
 v1.1

_static/file.png

_static/minus.png

_static/plus.png

